Probabilistic forecasting of wind power ramp events using autoregressive logit models
نویسنده
چکیده
A challenge for the efficient operation of power systems and wind farms is the occurrence of wind power ramps, which are sudden large changes in the power output from a wind farm. This paper considers the probabilistic forecasting of a ramp event, defined as exceedance beyond a specified threshold. We directly model the exceedance probability using autoregressive logit models fitted to the change in wind power. These models can be estimated by maximising a Bernoulli likelihood. We introduce a model that simultaneously estimates the ramp event probabilities for different thresholds using a multinomial logit structure and categorical distribution. To model jointly the probability of ramp events at more than one wind farm, we develop a multinomial logit formulation, with parameters estimated using a bivariate Bernoulli distribution. We use a similar approach in a model for jointly predicting one and two steps-ahead. We evaluate post-sample probability forecast accuracy using hourly wind power data from four wind farms.
منابع مشابه
Very short-term probabilistic forecasting of wind power with generalised logit-Normal distributions
Very short-term probabilistic forecasts, which are essential for an optimal management of wind generation, ought to account for the nonlinear and double-bounded nature of that stochastic process. They take here the form of discrete-continuous mixtures of generalised logit-Normal distributions and probability masses at the bounds. Both autoregressive and conditional parametric autoregressive mod...
متن کاملA Data-Driven Methodology for Probabilistic Wind Power Ramp Forecasting
With increasing wind penetration, wind power ramps (WPRs) are currently drawing great attention to balancing authorities, since these wind ramps largely affect power system operations. To help better manage and dispatch the wind power, this paper develops a data-driven probabilistic wind power ramp forecasting (p-WPRF) method based on a large number of simulated scenarios. A machine learning te...
متن کاملRamp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint
The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wi...
متن کاملWind power prediction interval estimation method using wavelet-transform neuro-fuzzy network
Wind power point forecasting is the primary method to deal with its uncertainty. However, in many applications, the probabilistic interval of wind power is more useful than traditional point forecasting. Methods to determine the probabilistic interval of wind power point forecasting value is very essential to power system operations. Based on the bootstrap method, this paper proposed a wavelet ...
متن کاملAn Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power
Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakehol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 259 شماره
صفحات -
تاریخ انتشار 2017